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Linear mode conversion is the partial transfer of wave energy from one wave type
(a) to another (b) in a weakly non-uniform background state. For propagation in
one dimension (x), the local wavenumber kjx of each wave (j = a, b) varies with x;
if these are equal at some xR , the waves are locally in phase, and resonant energy
transfer can occur. We model wave propagation in the Gulf of Guinea, where wave
a is an equatorially trapped Rossby–gravity (Yanai) wave, and wave b is a coastal
Kelvin wave along the (zonal) north coast of the Gulf, both propagating in zonal
coordinate x. The coupling of the waves is due to the overlap of their eigenfunctions
(normal modes in y, the meridional coordinate). We derive coupled mode equations
from a variational principle, and obtain an analytic expression for the wave-energy
conversion coefficient, in terms of the wave frequency and the scale length of the
thermocline depth.

1. Introduction
When linear waves of two different types propagate in a weakly non-uniform

medium, there may be local regions where the waves are in phase, or linearly
resonant. Then linear coupling between the waves produces a local energy transfer,
whose magnitude depends also on the spatial scale of the non-uniformity.

Since this phenomenon is prevalent in plasma physics, a general formulation has
been developed (Kaufman & Friedland 1987; Tracy & Kaufman 1993; Flynn &
Littlejohn 1994), which we here apply to an oceanographic problem. Some years ago
it was pointed out by Cane & Sarachik (1979) and by Philander (1977) (see also
Moore 1968) that an interesting mode coupling appears in the Gulf of Guinea, whose
northern coast is approximately zonal at 5◦N. (See figure 1.) The Cane–Sarachik
analysis utilizes a shallow-water model of the upper layer of the ocean, linearized
about a reference state having a uniform thermocline depth H , and studies linear
normal modes of the upper layer. The wave field (u, v, h) consists of the vertically
uniform horizontal velocity u = u êx + v êy of the upper layer and the downward
displacement h of the thermocline. The horizontal coordinates are x = eastward and
y = northward from the Equator.

In the absence of the northern boundary at yN , one finds (Cushman-Roisin 1994,
Ch. 19; Moore & Philander 1977) an equatorially trapped mixed Rossby–gravity
wave (or Yanai wave), with Gaussian dependence on y/Re, where Re is the equatorial
Rossby radius Re = (c/β)1/2. (The equatorial β-plane model has Coriolis parameter
f(y) ≡ β y, and characteristic ‘shallow-water-wave’ speed c ≡ (g′H)1/2, in terms of
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Figure 1. The Gulf of Guinea with a Yanai wave propagating eastwards along the equator and a
Kelvin wave propagating westwards along the south coast of West Africa.

the reduced gravity g′ ≡ (∆ρ/ρ) g, where ∆ρ is the density difference across the
thermocline.) The Yanai dispersion relation kYx (ω) is

kYx (ω) =
ω

c
− β

ω
, (1.1)

displayed non-dimensionally in figure 2 as

kYx Re =

(
ω

(βc)1/2

)
−
(

ω

(βc)1/2

)−1

. (1.2)

(For nominal values, H = 35 m, g′ = 2 cm s−2, we have c = 85 cm s−1. Then, with
β ≈ 2.3 × 10−13 cm−1s−1, we have Re ≈ 190 km, which is the characteristic reduced
wavelength λ̄ ≡ λ/2π ≡ k−1

x ; and (βc)1/2 ≈ 4.4× 10−6 s−1, giving a characteristic wave
period τ = 2π/(βc)1/2 ≈ 16.5 days.)

Along the northern boundary at yN , the f-plane model (f = constant = fN ≡ β yN)
yields the coastally trapped Kelvin wave (Cushman-Roisin 1994, Sec. 6-2), a normal
mode with exponential falloff in (yN − y)/RN , where RN is the local Rossby radius at
yN , i.e. RN ≡ c/fN . Its dispersion relation is

kKx (ω) = −ω/c or kKx Re = − ω

(βc)1/2
, (1.3)

also displayed in figure 2. (For yN = 5◦N ≈ 550 km, we have fN = 12× 10−6 s−1, or
an inertial period τN = 2π/fN ≈ 6 days. The Rossby radius is thus RN ≈ 70 km.)

In figure 3, we show the Yanai and Kelvin eigenfunctions, noting that they are
normal modes for slightly different models. Since Re + RN ≈ 260 km is less than
yN ≈ 550 km, their overlap is exponentially small, indicating that the physical coupling



Mode conversion in the Gulf of Guinea 177

Kelvin
Yanai

ö/(bc)1/2

kx (c/b )1/2

1/o2

–1/o2
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Figure 3. Normal-mode eigenfunctions for the Yanai (v vs. y) and Kelvin (u vs. y) waves, for

Re/yN ≡
√

2ωR/fN = 0.35 and RN/yN ≡ 2(ωR/fN)2 = 0.12. Note the small overlap, where coupling
occurs, resulting in conversion.

between the modes is weak. This weak coupling is effective, however, if the Yanai
and Kelvin waves are in phase, i.e. if they have nearly the same frequency ω and
wavenumber kx.

The condition for linear resonance is obtained by equating the wavenumbers kjx of
the two waves (j = Y,K), for equal ω and given c:

kYx (ω) = kKx (ω). (1.4)

From (1.1) and (1.3), we solve for ω to obtain the resonant frequency ωR and resonant
wavenumber kRx , in terms of c:

ωR

(βc)1/2
=

1√
2
, kRx

(
c

β

)1/2

= − 1√
2
. (1.5)

(For c = 85 cm s−1, the resonant period is τR ≡ 2π/ωR ≈ 23 days, and the resonant
reduced wavelength is λ̄R ≡ |kRx |−1 ≈ 365 km.) Thus, if c is uniform in x, a Yanai wave
whose frequency is not near ωR is not resonantly coupled to the Kelvin wave at that
frequency.

However, for non-uniform c(x), but not allowing y-dependence of c, a Yanai wave
of frequency ω and x-dependent kx may pass through resonance with the Kelvin
wave at that frequency. The zonal non-uniformity of the thermocline depth H(x),
and thus of c(x), is a characteristic feature of equatorial oceans. (For the Atlantic,
see Philander 1990 (figure 2.16, from Merle 1980), for seasonal averages of this
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Figure 4. Dispersion curves (or rays) in (kx, x) space for two representative wave periods,
(a) 18 days and (b) 22 days. Conversion from Yanai to Kelvin occurs at the point xR where
the Yanai ray crosses the Kelvin dispersion curve.

eastward shallowing.) The local dispersion relations of the two waves now exhibit the
x-dependence:

kYx (x;ω) = ω/c(x)− β/ω (1.6a)

kKx (x;ω) = −ω/c(x). (1.6b)

In figure 4, we display kYx (x) and kKx (x) for a model thermocline, c(x) = c0

exp(−x/Lc), where c0 = 85 cm s−1 and Lc = 3 yN = 1650 km, and for two representa-
tive frequencies. The arrows indicate the direction of the group velocity, i.e. of energy
flux of each wave. Thus the dispersion curves can be considered as rays [x(t), kx(t)]
in (x, kx) phase space.

We see that the rays cross at the ω-dependent position xR(ω), determined by again
equating kYx = kKx , but now solving for c in terms of fixed ω:

c(xR) ≡ cR(ω) = 2ω2/β. (1.7)

(This is of course equivalent to (1.5).) In the neighbourhood of the resonant crossing,
then, an incident Yanai wave can convert a fraction C of its energy flux to the Kelvin
wave, the remainder T being transmitted.

This paper is devoted to the analytic formulation of this process, resulting in an
explicit expression for T and C , in terms of the wave frequency ω (relative to fN) and
the scale length Lc (relative to yN). In § 2 we represent the set of linearized evolution
equations for the wave field in non-uniform H(x) as a Schrödinger-type equation
(2.15) for the three-component field ψ (2.12). The evolution matrix L (2.16) is shown
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to be a Hermitian operator for a Hilbert space, whose metric (2.14) is obtained from
the expression (2.7) for wave energy. This allows the evolution to be expressed as a
variational principle, for time-dependent or fixed-frequency fields.

In § 3 we use this variational principle for a single wave (either Yanai or Kelvin),
in the non-resonant case. By specifying the wave polarization (u : v : h), we obtain
the appropriate local dispersion relation, remarkably without explicitly choosing the
normal-mode y-dependence. The energy conservation law yields the x-dependence of
wave amplitude.

In § 4 we apply the variational principle to the two-wave problem, obtaining coupled
equations for their amplitudes in standard form. For the case of uniform H , we recover
the Cane–Sarachik result for the splitting of the frequency eigenvalues. In the non-
uniform case, we obtain explicit expressions for the transmission and conversion
coefficients. We find that the characteristic wave period for significant conversion (for
C ≈ 0.5) is about 3 weeks.

In § 5 we discuss possible extensions of the present work, and consider the observ-
ability of this process in the Gulf of Guinea.

We should point out that (in addition to the process studied here) conversion can
occur as well at a discontinuity, such as the east coast of the Gulf of Guinea, where
complete conversion of a Yanai wave to coastal Kelvin waves occurs (Moore 1968).

2. Variational principle
Linear mode conversion is the process whereby a wave a of one type transfers a

fraction of its energy to a second wave b (of different type). The two waves have
the same constant frequency ω (for a time-independent medium), while their weakly
non-uniform wavenumbers ka(x), kb(x) are locally equal (for a spatially non-uniform
medium) at some location xR . There the waves are locally in phase, resulting in linear
resonance and energy transfer This process has been extensively studied for eikonal
(quasi-plane) waves in the context of plasma physics. Here we extend the analysis to
waves which are eikonal in x only, but are quasi-normal modes in y.

This process can occur in the Gulf of Guinea, whose north coast we model as zonal
at 5◦N. We employ the linearized 1 1

2
-layer model (Cushman-Roisin 1994, p. 178) for

the evolution of the vertically uniform horizontal velocity [u(x, y, t), v(x, y, t)] in the
upper mixed layer of depth H(x). The x-dependence (LH ≡ |d lnH/dx|−1 ≈ 1000 km)
of the thermocline is essential for the mode-conversion process.

The nonlinear continuity equation for the upper layer of total depth H(x)+h(x, y, t),
is

∂t(H + h) = −∂x[(H + h)u]− ∂y[(H + h)v]. (2.1)

We linearize about a reference state with depth H(x), non-uniform in x but inde-
pendent of y and t, and with zero flow. Then the linearized continuity equation
is

∂t h = −∂x (Hu)− ∂y (Hv). (2.2)

The linearized momentum equations are

∂t u− fv = −g′∂xh,
∂t v + fu = −g′∂y h.

}
(2.3)

The evolution equations (2.2), (2.3) satisfy a quadratic energy conservation law:

∂E(x, y; t)

∂t
= − ∇ · S(x, y; t), (2.4)
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where E is the wave energy per two-dimensional area:

E(x, y; t) ≡ 1
2
ρ0H(x) (u2 + v2) + 1

2
ρ0g

′ h2, (2.5)

and S is the two-dimensional wave-energy flux density:

S(x, y; t) ≡ ρ0c
2(x)h u. (2.6)

For fixed frequency ω, with u(x, y; t) = u(x, y) e−iωt + c.c., etc., the period-averaged
energy density is, from (2.5),

Ē(x, y) ≡ ρ0H(x) (|u(x, y)|2 + |v(x, y)|2) + ρ0g
′ |h(x, y)|2, (2.7)

and the period-averaged energy flux is, from (2.6),

S̄(x, y) = ρ0 c
2(x)(h∗u+ hu∗), (2.8)

while the energy-conservation law (2.4) becomes

0 = ∇ · S̄ . (2.9)

On integration over y, with the boundary condition v(x, yN) = 0, (2.9) becomes the
one-dimensional energy-conservation law:

0 =
d

dx
S(x), (2.10)

where

S(x) ≡
∫ yN

−∞
dy S̄(x, y) · x̂ (2.11)

is the total period-averaged energy flux in the x-direction.
To obtain a variational principle, we shall express the set of evolution equations as

a Schrödinger-like equation, with a Hermitian evolution operator acting on a Hilbert
space of states. First, expressing the complex-valued (x, y)-dependent state (u, v, h) as
a column vector

ψ(x, y) ≡
 u

v
h

 (x, y), (2.12)

we write the energy density (2.7) as a quadratic form in the state ψ:

E(ψ) ≡ ψ† ·M · ψ, (2.13)

where

M ≡
 ρ0H(x) 0 0

0 ρ0H(x) 0
0 0 ρ0 g

′

 (2.14)

is a positive-definite (x-dependent) metric matrix. (In (2.13), ψ† is the row vector
(u∗, v∗, h∗).)

Our approach to linear conversion is based on a variational formulation of the
linear evolution equations, (2.2) and (2.3), which we express as

i ∂tψ = L · ψ , (2.15)

where

L ≡
 0 i β y g′k̂x
−i β y 0 g′k̂y
k̂x H(x) k̂y H(x) 0

 . (2.16)
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The evolution matrix L is an operator, with k̂x ≡ −i ∂x, k̂y ≡ −i ∂y . (Note that

k̂x H(x) 6= H(x) k̂x.)
We wish to consider the set of three-component fields ψ(x, y) as elements of a

Hilbert space. Accordingly, using the metric M , we define an inner product:

〈ψ1, ψ2〉 ≡
∫

dx

∫ yN

−∞
dy ψ†1 ·M · ψ2. (2.17)

Thus the norm of a state ψ is its total wave energy, by (2.13):

‖ψ‖2 ≡ 〈ψ,ψ〉 =

∫∫
dx dy Ē(ψ). (2.18)

We can now verify that L is Hermitian with respect to the inner product (2.17), i.e.

〈ψ1, L · ψ2〉 = 〈L · ψ1,ψ2〉, (2.19)

upon imposing the boundary condition v(x, yN, t) = 0. We then form the variational
functional

A′(ψ) ≡
∫

dt 〈ψ, (i ∂tψ − L · ψ)〉 (2.20)

on states ψ(t), and obtain (2.15) by demanding stationarity of A′ with respect to
arbitrary variation of ψ. Alternatively, for time-dependence exp(−iω t), we define

A(ψ) ≡ 〈ψ, (ωI − L) · ψ〉
≡
∫∫

dx dy ψ† · D · ψ (2.21)

where the ‘dispersion’ matrix operator D is defined as

D ≡ M · (ωI − L) = ρ0

 ωH −i β y H −k̂x c2

i β y H ωH −k̂y c2

−c2 k̂x −c2 k̂y ω g′

 , (2.22)

which is manifestly Hermitian in the conventional sense. On varying A, we obtain

D · ψ = 0, (2.23)

equivalent to (2.15) when ω is fixed.
Rather than solving (2.23), our approach is to use the variational principle (2.21),

with ψ now constrained to a physically motivated subset of the full set of states.
Thus, in § 3, we allow ψ to represent a single wave only, either a Yanai wave or a
coastal Kelvin wave. Then, in § 4, the state ψ is a superposition of the two waves, and
locally resonant coupling leads to linear conversion.

While our variational principle represents dynamics for the β-plane bounded at yN ,
the Yanai and Kelvin waves are not normal modes of this system. Rather, the Yanai
wave is a normal mode of the unbounded β-plane, and the Kelvin wave is a normal
mode of the f-plane bounded at yN . From their respective models, we obtain their
polarizations in order to define these waves for the bounded β-plane.

3. Single wave
3.1. Yanai wave

For each single wave, we begin by considering the case of c uniform in x, so that
the wave field ψ can have the x-dependence eikx. For the Yanai wave in the bounded
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β-plane, we choose its polarization (the ratio u : v : h) to be that of an unbounded
(yN →∞) Yanai wave:

u : v : h = iωy : c : iωyc/g′ . (3.1)

To derive (3.1), we use the v-eigenfunction, v ∝ exp[− 1
2
(y/Re)

2], to replace ∂yv in (2.2)

by −(y/R2
e )v. Then, with ∂t = −iω and ∂x = ikx, we eliminate h from (2.2) and (2.3)

and solve for u/v, obtaining

u

v
=

iβy

ω − kxc . (3.2)

The dispersion relation (1.1) implies that ω − kxc = βc/ω; using this in (3.2) then
yields u/v = iωy/c. Then (2.3) with (1.1) yields u/h = g′/c.

Thus we take, as the Yanai trial vector,

ψY(x, y) = ã eikx

 iωy
c

iωyc/g′

 F(y), (3.3)

where ã is its (real, constant) dimensionless amplitude, ã ≡ |v(x, y = 0)|/c, and F(y) is
at first an arbitrary dimensionless function, subject only to the boundary conditions
F(yN) = 0 = F(−∞) and the normalization F(0) = 1.

On substituting (3.3) into (2.21) it is straightforward to obtain

A(ψY) =

∫
dxDa(k, ω) ã2, (3.4)

with the Yanai dispersion function Da(k, ω):

Da(k, ω) =

(
ω

c
− β

ω
− k
)
D̄a, (3.5)

D̄a = (2ω2ρ0c
3/g′)

∫ yN

−∞
dy y2|F(y)|2. (3.6)

On varying (3.4) with respect to the amplitude ã, we obtain Da(k, ω) = 0, yielding
the Yanai dispersion relation, (1.1). Thus (1.1) results here solely from the choice of
polarization.

Next we allow for weak x-dependence of H (and thus c), and replace ã eikx, in (3.3),
with the eikonal (WKB) expression

ã(x) eiθ(x) (3.7)

with the local wavenumber k(x) ≡ dθ/dx. We assume formally that kL� 1, where L
represents the scale length of the spatial variation of H , and thus also of c, ã, and k.

Therefore the operator k̂x in (2.22) acts, to lowest approximation, only on eiθ(x), and
can thus be replaced by k(x). In (3.3) we retain the same polarization locally replacing
c by c(x), while the y-dependence of F generalizes to include slow x-dependence of
F(x, y). Thus (3.3) is replaced by

ψY(x, y) = ã(x) eiθ(x)

 iωy

c(x)

iωyc(x)/g′

 F(x, y). (3.8)
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Substituting (3.8) into (2.21), we obtain the generalization of (3.4):

A(ψY) =

∫
dxDa(x, k) ã

2(x), (3.9)

with

Da(x, k) =

(
ω

c(x)
− β

ω
− k(x)

)
D̄a(x), (3.10)

D̄a(x) = (2ω2ρ0c
3(x)/g′)

∫
dy y2 |F(x, y)|2. (3.11)

On varying (3.9) with respect to the x-dependent amplitude ã(x), we now obtain
Da(x, k(x)) = 0, and the local Yanai dispersion relation (1.6a). Varying (3.9) with
respect to the phase θ(x), which appears only in k ≡ dθ/dx, we have

δA =

∫
dx ã2(x)

(
∂Da/∂k

)
δk(x), (3.12)

with δk(x) ≡ d δθ(x)/dx. On integrating by parts, we obtain

δA =

∫
dx δθ(x)

d

dx

[
−∂Da
∂k

(x, k) ã2(x)

]
. (3.13)

With δA = 0 for all δθ(x), we obtain the conservation law:

d

dx

[
−∂Da
∂k

(x) ã2(x)

]
= 0. (3.14)

But by (3.10), −∂Da/∂k = D̄a(x), so (3.14) yields

d

dx

[
D̄a(x) ã2(x)

]
= 0, (3.15)

which determines the x-variation of ã(x).

The physical interpretation of (3.15) is that it represents energy conservation. To

see this, we return to the general expression (2.21), replace k̂x in (2.22) by k(x) and,
on varying (2.21) with respect to θ(x), obtain

0 = δA =

∫
dx δθ(x)

d

dx

[∫ yN

−∞
dy ρ0 c

2(x)(h∗u+ hu∗)(x, y)

]
. (3.16)

We recognize the bracketed expression in (3.16) as S(x), from (2.11) and (2.8). Thus
(3.16) is

δA =

∫
dx δθ(x) dS(x)/dx. (3.17)

Comparing this to (3.13), we identify (3.15) as the energy-conservation law (2.10),
with the Yanai energy flux:

SY = D̄a(x) ã2(x). (3.18)

To evaluate D̄a(x), we first choose for the function F(y) in (3.3), that appropriate
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for yN →∞, but truncated at yN:

F(y) =

{
exp [− 1

2

(
y/Re

)2
], y < yN

0, y > yN.
(3.19)

Then for non-uniform c(x) we use the local equatorial Rossby radius:

Re(x) = (c(x)/β)1/2, (3.20)

in (3.19), and thus take

F(x, y) = exp

[
−1

2

(
y

Re(x)

)2
]

for y < yN. (3.21)

Substituting (3.21) into (3.11), we obtain

D̄a(x) = (π1/2 ω2 ρ0/g
′β3/2) c9/2(x), (3.22)

neglecting the exponentially small correction of order exp[−(yN/Re)
2]. (Recall that, for

our nominal parameters, we have yN ≈ 2Re, so the correction is of order e−4 ≈ 2%.)
Inserting (3.22) into (3.15), we obtain the Yanai amplitude dependence on c(x):

ã(x) ∝ c−9/4(x). (3.23)

Thus, as the Yanai wave travels eastward, its dimensionless amplitude increases as
the layer depth decreases: ã(x) ∝ H−9/8(x). Since the thermocline displacement h is
proportional to cã (see (3.3)), it increases as h(x) ∝ H−5/8(x).

3.2. Coastal Kelvin wave

We next perform the analogous calculation for a coastal Kelvin wave. For the case
of uniform c, we take

ψK(x, y) = b̃ eikx

 c
0
−H

 G(y), (3.24)

where the polarization

u : v : h = c : 0 : −H (3.25)

is the standard result for the f-plane model. At first, we do not specify the dimen-
sionless G(y), except for its normalization G(yN) = 1. Substituting (3.24) into (2.21),
we obtain

A(ψK) =

∫
dxDb(k, ω) b̃2, (3.26)

with

Db(k, ω) =
(ω
c

+ k
)
D̄b, (3.27)

D̄b = (2ρ0c
5/g′)

∫ yN

−∞
dy |G(y)|2. (3.28)

Varying (3.26) with respect to b̃, we obtain Db(k, ω) = 0, leading to the standard
Kelvin dispersion relation (1.3).
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Then we allow for weak x-dependence, and replace b̃ eikx by b̃ eiθ(x):

ψK(x, y) = b̃(x) eiθ(x)

 c(x)
0

−H(x)

 G(x, y), (3.29)

where the local polarization

u : v : h = c(x) : 0 : −H(x) (3.30)

is that of the uniform case, and G(x, y = yN) = 1. Substituting into (2.21), we obtain

A(ψK) =

∫
dxDb(x, k) b̃

2(x), (3.31)

with

Db(x, k) =

(
ω

c(x)
+ k(x)

)
D̄b(x), (3.32)

D̄b(x) =
(
2 ρ0 c

5(x)/g′
) ∫

dy |G(x, y)|2. (3.33)

Varying with respect to b̃(x), we obtain the local Kelvin dispersion relation (1.6b),
again without specifying G(x, y). Varying with respect to θ(x), we obtain the energy
conservation law:

dSK

dx
= 0, (3.34)

with the (constant) Kelvin energy flux:

SK = −∂Db
∂k

b̃2 (3.35)

= −D̄b(x) b̃2(x). (3.36)

The Kelvin energy flux is negative, and thus westward along the coast. To evaluate
D̄b(x), we take

G(x, y) = exp

[
−
(
yN − y
RN(x)

)]
, (3.37)

appropriate to the f-plane model, where

RN(x) =
c(x)

fN
(3.38)

is the local Rossby radius at yN . Evaluating D̄b, we find

D̄b(x) =
(
ρ0/g

′ fN
)
c6(x); (3.39)

thus, from (3.34), (3.36), the Kelvin amplitude varies as

b̃(x) ∝ c−3(x). (3.40)

As the Kelvin wave propagates westward, c(x) increases, so the dimensionless ampli-
tude b̃(x) decreases, and the thermocline displacement decreases as h(x) ∝ c−1.
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4. Linearly coupled Yanai and Kelvin waves
4.1. Uniform H case

We now consider a two-mode model consisting of the Yanai wave and the Kelvin
wave, first for the case of uniform H , so that the x-dependence may be eikx:

ψ(x, y) = ψY(x, y) + ψK(x, y). (4.1)

Here ψY is given by (3.3) (but with ã now allowed to be complex), and ψK by (3.24).
On substituting (4.1) into (2.21), we now obtain additional cross-terms, representing

coupling:

A =

∫
dx [Da|ã|2 + Db|b̃|2 + η ã∗b̃+ η∗ ãb̃∗], (4.2)

with

η = iρ0(c
4/g′)

∫ yN

−∞
dy F∗(y) (β y − c ∂y)G(y). (4.3)

On using (3.19) for F(y) and (3.37) for G(y), we obtain

η = −i (ρ0 c
5/g′) exp [− 1

2

(
yN/Re

)2
], (4.4)

with Da given by (3.5) and (3.22), and Db given by (3.32) and (3.39). Varying (4.2)
with respect to ã and b̃, we obtain the coupled algebraic equations:

Da ã+ η b̃ = 0,

η∗ ã+ Db b̃ = 0.

}
(4.5)

More explicitly,

[kY(ω)− k]D̄a ã+ η b̃ = 0,

η∗ ã+ [k − kK(ω)] D̄b b̃ = 0.

}
(4.6)

The condition for a solution, that the determinant vanishes:

[kY(ω)− k][k − kK(ω)] = |η|2/D̄a D̄b, (4.7)

yields the dispersion relation ω(k) in the presense of coupling η. We limit ourselves
to evaluating the splitting at the crossing: kR = −(β/2c)1/2, ωR = (βc/2)1/2. (See (1.5)
and figure 5a.) We expand kj(ω)− kR to first order in (ω − ωR):

kj(ω)− kR = (ω − ωR)(dkj/dω), (4.8)

and substitute this into (4.7). The result is that

ω(kR) = ωR ± ∆ω, (4.9)

with

∆ω = |η|
[
cag |cbg|
D̄a D̄b

]1/2

= |η|
[
∂Da

∂ω

∂Db

∂ω

]−1/2

, (4.10)

where cag ≡ (dka/dω)−1 = c/3, cbg ≡ (dkb/dω)−1 = −c. Evaluating (4.10), we obtain

∆ω

ωR
=

2

31/2π1/4

(
yN

Re

)1/2

exp[− 1
2
(yN/Re)

2], (4.11)

in complete agreement with the results of Cane & Sarachik (1979), obtained by
solving (2.23) exactly for the uniform case, and then studying the asymptotic limit
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Figure 5. Dispersion curves for coupled Yanai and Kelvin waves: (a) ω vs. kx for c = 85 cm s−1;
(b) kx vs. x for wave period 18 days and thermocline scale length Lc = 3yN = 1650 km (as in figure
4a). In the gap kx is complex, representing the tunnelling of the Yanai mode across the conversion
region.

for yN � Re. This agreement serves as a validation for our approach based on the
two-wave model (4.1).

4.2. Non-uniform H case

We now proceed to study the linear interaction of the two waves in the x-dependent
thermocline, i.e. the conversion process. Here the eikonal assumption (d ln ã/dx� k)
is dropped to allow for strong x-dependence of the amplitudes in this process, and

ã(x) eiθ(x) of (3.8) is replaced by complex a(x). Then k̂x ≡ −i ∂x in (2.22) acts on the
amplitude a(x), but still not on c(x). Then (3.9) becomes

A(ψY) =

∫
dx a∗(x) D̂a(x, k̂x) a(x), (4.12)

with (3.10) replaced by

D̂a =

(
ω

c(x)
− β

ω
− k̂x

)
D̄a. (4.13)

Similarly (3.31) becomes

A(ψK) =

∫
dx b∗(x) D̂b(x, k̂x) b(x), (4.14)

with

D̂b =

(
ω

c(x)
+ k̂x

)
D̄b. (4.15)



188 A. N. Kaufman, J. J. Morehead, A. J. Brizard and E. R. Tracy

For the sum of the two waves, (4.2) becomes

A(ψY + ψK) =

∫
dx [a∗ D̂a a+ b∗ D̂b b+ a∗ η b+ b∗ η∗ a]. (4.16)

Varying with respect to a and b yields the coupled differential equations for a(x) and
b(x):

D̂a a(x) + η b(x) = 0,

η∗ a(x) + D̂b b(x) = 0,

}
(4.17)

similar in form to the algebraic equations (4.5).
To solve (4.17) in the neighbourhood of the conversion location xR , we replace

the function η(x), given by (4.4), by its value at xR: η ≡ η(xR); likewise we evaluate
the factors D̄a, D̄b of (3.22), (3.39) at xR . Further, we linearize the x-dependent term
ω/c(x) of (4.13), (4.15) with respect to x:

ω

c(x)
=
ω

cR

(
1 +

x− xR
Lc

)
, (4.18)

where Lc ≡ −(d ln c/dx)−1 at xR .
Now that (4.17) has been placed in the standard form (Kaufman & Friedland 1987)

for linear mode conversion, where D̂a, D̂b are linear in x, k̂x, while η is constant; we
can solve (4.17) exactly, and quote the result for the transmission coefficient T , the
fraction of Yanai energy flux not converted to the Kelvin wave:

T = exp[−2π|η|2/B], (4.19)

where

B ≡ |{Da, Db}|
= |(∂Da/∂x)(∂Db/∂kx)− (∂Da/∂kx)(∂Db/∂x)| (4.20)

is the absolute value of the Poisson Bracket of the two dispersion functions, evaluated
at xR . From (4.20) and (4.4), we evaluate T , and obtain

T (ω,Lc) = exp

[
−(2π)1/2

(
Lc

yN

) (
fN

ω

)2

e−(fN/ω)2/2

]
, (4.21)

valid when ω < fN (so that the coupling is weak; when ω > fN , T ≈ 0.) The reason
that T depends on ω is via (1.7): a decrease of ω implies a decrease of cR and thus
of Re and RN , thereby decreasing |η|.

The energy conservation law (2.10) for the linearized version of (4.17) takes the
form

d

dx

[
SY(x) + SK(x)

]
= 0 ; (4.22)

the coupling η, being independent of k̂x, does not contribute to the energy flux. Away
from the conversion region x ≈ xR , (4.22) states that the energy flux west of xR equals
that east of xR:

SY(x� xR) + SK(x� xR) = SY(x� xR), (4.23)

since SK(x � xR) = 0 for no incoming Kelvin wave. (See figure 4.) Thus flux
conservation can be expressed as

1 + (−C) = T , (4.24)
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Figure 6. Contours of trnsmission coefficient as a function of wave period and thermocline
scale length, for (a) T = 0.01, C = 0.99; (b) T = 0.1, C = 0.9; (c) T = 0.5, C = 0.5;
(d) T = 0.9, C = 0.1; (e) T = 0.99, C = 0.01.

where the conversion coefficient C is the ratio of the magnitude of the converted
Kelvin flux |SK| to the incident Yanai flux. Hence energy conservation states that

C = 1− T , (4.25)

with T given by (4.19) or (4.21).
We display the level sets of C and T in figure 6, as functions of Lc and ω. We note

the strong dependence on ω, and the weak dependence on Lc. Roughly, we may say
that conversion is negligible for wave period greater than 3 weeks (curves (d) and (e)
of figure 6), while for wave period less than 3 weeks conversion is substantial (curves
(a), (b), and (c) of figure 6).

To estimate the width ∆x of the conversion region (see figure 5b), we use the

eikonal approximation k̂x → k(ω) in (4.17), to obtain (4.7), but now with k replaced
by k(x), and kj(ω) replaced by kj(x;ω) (see (1.6)):

[kY(x;ω)− k(x)][k(x)− kK(x;ω)] = |η|2/D̄aD̄b . (4.26)

Expanding about xR , kR , we find that k(ω) has caustics (dk/dx = ∞) at x = xR ±∆x,
where

(∆x)2 =

∣∣∣∣dkYdx

dkK

dx

∣∣∣∣−1

|η|2/D̄aD̄b. (4.27)

We express |η|2 in terms of T by (4.19):

|η|2 = (B/2π) lnT−1 , (4.28)

and so obtain, with (4.20),

(∆x)2 =

[∣∣∣∣dkYdx

∣∣∣∣−1

+

∣∣∣∣dkKdx

∣∣∣∣−1
]

(2π)−1 lnT−1 . (4.29)
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Since |dkj/dx| = |k|/L = 2π/λL, we then obtain, for T neither very small nor very
near 1,

∆x ≈ (λL)1/2/2π. (4.30)

Thus our local approximation, which assumes that ∆x� L, is valid if λ/2π� L, as
required by the eikonal theory.

Incidentally, the transmission exponent |η|2/B can be expressed in terms of the
frequency splitting ∆ω, by using the identity

{Da, Db} = {ωa, ωb} ∂Da
∂ω

∂Db

∂ω
, (4.31)

where ωj(kx, x) is the root of Dj(kx, x;ω) = 0. We find that

|η|2
B =

(∆ω)2

|{ωa, ωb}| . (4.32)

Thus information on the splitting of frequency eigenvalues allows direct determination
of conversion.

5. Conclusions, observability, and extensions
We have shown that a Yanai wave propagating eastward (in terms of group

velocity) on a zonally dependent thermocline, converts a fraction C of its energy flux
to a westward-propagating coastal Kelvin wave, at a frequency-dependent location
xR(ω) where the respective wavenumbers match (kY(xR) = kK(xR)). This conversion
fraction is appreciable for wave periods of order 3 weeks or less.

Narrow-band Yanai waves have been observed in the Gulf of Guinea (Qiao &
Weisberg 1995), and so have coastal Kelvin waves (Clarke & Battisti 1983; Picaut
1983). The latter may be produced by the conversion process studied here, but also
by boundary conversion (Clarke 1983) at the eastern coast of the Gulf of Guinea.
To distinguish between these two sources of the Kelvin waves, one could examine
the time lag in the correlation between the Kelvin and Yanai surface displacements.
Satellite altimeter data may provide such evidence for the conversion.

A number of extensions of the present study suggest themselves:
(1) A gradual conversion can occur as a result of the coast having a zonal

dependence of its latitude. This situation is found at the western entrance to the Gulf
of Guinea (figure 1), and also for the northern coast of New Guinea (south of the
Equator). Here one could model the thermocline depth as uniform, and take into
account the x-dependence of the coupling strength, varying with the overlap (figure
3). In contrast to the x-dependent-thermocline case studied here, conversion would
arise only in the narrow frequency band at the eigenvalue splitting (figure 5a).

(2) One can analyse the conversion of a coastal Kelvin wave approaching xR(ω)
from the east into a Yanai wave. This process would have the same T and C as for the
Yanai-to-Kelvin conversion. But if both incoming channels are occupied, interference
occurs, and the full S-matrix for this process is needed (Tracy & Kaufman 1993,
1990).

(3) If the thermocline depth is non-monotonic (Philander 1990; Merle 1980), then
succesive conversions can occur, with interesting effects of interference (Brizard et al.
1998; Liang et al. 1994).

(4) Slow seasonal time-dependence of the thermocline depth H(x, t) can be treated
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by using the Poisson bracket B (4.20) extended to four-dimensional phase space
(x, kx; t,−ω).

(5) Continuous stratification and vertically propagating modes (Philander 1977;
Moore, Kloosterziel & Kessler 1998) can be treated by using the four-dimensional
phase space (x, kx; z, kz).

(6) Weak nonlinearity implies amplitude-dependence in the dispersion relations.
This may lead to enhanced conversion due to phase-locking, i.e. the autoresonant
phenomenon studied by Friedland (1995).

(7) If the reference state has a y-dependent flow u0(y), the Hermitian property
of the evolution operator L (2.16) is lost. However, it may be possible to find a
pseudo-Hermitian formulation, in terms of a pseudo-Hilbert space with indefinite
metric (Brizard 1992; Brizard, Cook & Kaufman 1993).

We are indebted to Darryl Holm for suggesting that our wave-conversion methods,
developed for plasma physics, may be applicable to oceanographic problems. We
thank the members of the oceanographic community for their encouragement. We also
thank Dennis Moore and Mark Cane for suggesting improvements in the presentation.
This research was supported by the US Department of Energy, under Contract DE-
AC03-76SFOO098.
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